
Polyspace® Bug Finder™ Server™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ Release Notes
© COPYRIGHT 2019-2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2020b

Compiler Support: Set up Polyspace analysis for code compiled with
Renesas SH C compilers . 1-2

Cygwin Support: Create Polyspace projects automatically by using Cygwin
3.x build commands . 1-2

C++17 Support: Run Polyspace analysis on code with C++17 features
. 1-2

Configuration from Build System: Generate a project file or analysis
options file by using a JSON compilation database 1-2

Configuration from Build System: Specify how Polyspace imports
compiler macro definitions . 1-3

Configuration from Build System: Compiler configuration cached from
prior runs for improved performance . 1-3

Offloading Analysis: Submit Polyspace analysis jobs from CI server to a
dedicated analysis cluster . 1-3

Offloading Analysis: Server-side errors reported back to client side 1-4

Results Export: Export Polyspace results to external formats such as
SARIF JSON . 1-4

User Authentication: Use a credentials file to pass your Polyspace Access
credentials at the command line . 1-5

Importing Review Information: Accept information in source or
destination results folder in case of merge conflicts 1-5

polyspacePackNGo Function: Generate and package Polyspace option files
from a Simulink model . 1-6

AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules
including 61 new rules in R2020b . 1-6

CERT C Support: Check for missing const-qualification and use of
hardcoded numbers . 1-12

CERT C++ Support: Check for exception handling issues, memory
management problems, and other rule violations 1-12

iii

Contents

MISRA C++:2008 Support: Check for commented out code, variables
used once, exception handling issues, and other rule violations 1-12

JSF AV C++ Support: Check for commented out code and methods that
can be inlined . 1-13

MISRA C Support: Check for commented out code 1-13

New Bug Finder Defect Checkers: Check for post-C++11 defects such as
problematic move operations, missing constexpr, and noexcept
violations . 1-14

Modifying Checker Behavior: Check for non-initialized buffers when
passed by pointer to certain functions . 1-15

Changes in analysis options and binaries . 1-15
XML syntax with option -code-behavior-specifications changed 1-15

Changes to coding rules checking . 1-16

Updated Bug Finder defect checkers . 1-21

Updated code metrics specifications . 1-23

R2020a

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers . 2-2

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and
XC32 compilers . 2-2

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors . 2-2

Extending Checkers: Run stricter analysis that considers all possible
values of system inputs . 2-2

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes,
special member functions, overloading and other groups 2-3

CERT C Support: Check for CERT C rules related to threads and
hardcoded sensitive data, and recommendations related to macros and
code formatting . 2-6

CERT C++ Support: Check for CERT C++ rule related to order of
initialization in constructor . 2-7

iv Contents

CWE Support: Check for CWE rule related to incorrect block delimitation
. 2-8

New Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and other issues 2-8

Modifying Checkers: Create list of functions to prohibit and check for use
of functions from the list . 2-10

Exporting Results: Export only results that must be reviewed to satisfy
software quality objectives (SQOs) . 2-10

Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace as
part of continuous delivery pipeline . 2-10

Report Generation: Configure report generator to communicate with
Polyspace Access over HTTPS . 2-11

Report Generation: Navigate to Polyspace Access Results List from report
. 2-11

Changes in analysis options and binaries . 2-11
Option -function-behavior-specifications renamed to -code-behavior-
specifications and capabilities extended . 2-11

Changes to coding rules checking . 2-12

Updated Bug Finder defect checkers . 2-13

R2019b

Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers . 3-2

AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and other issues 3-2

CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and other issues . 3-3

CERT C Support: Check for undefined behavior from successive joining or
detaching of the same thread . 3-4

New Bug Finder Defect Checkers: Check for new security vulnerabilities,
multithreading issues, missing C++ overloads, and other issues 3-4

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used . 3-5

v

Configuration from Build System: Compiler version automatically
detected from build system . 3-5

Updated Bug Finder defect checkers . 3-5

R2019a

Bug Finder Analysis Engine Separated from Viewer: Run Bug Finder
analysis on server and view the results from multiple client machines
. 4-2

Continuous Integration Support: Run Bug Finder on server class
computers with continuous upload to Polyspace Access web interface
. 4-2

Continuous Integration Support: Set up testing criteria based on Bug
Finder static analysis results . 4-4

Continuous Integration Support: Set up email notification with summary
of Bug Finder results after analysis . 4-4

Offloading Polyspace Analysis to Servers: Use Polyspace desktop products
on client side and server products on server side 4-5

vi Contents

R2020b

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

1

Compiler Support: Set up Polyspace analysis for code compiled with
Renesas SH C compilers
Summary: If you build your source code by using Renesas® SH C compilers, in R2020b, you can
specify the target name sh, which corresponds to SuperH targets, for your Polyspace® analysis.

See also Renesas Compiler (-compiler renesas).

Benefits: You can now set up a Polyspace project without knowing the internal workings of Renesas
SH C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Cygwin Support: Create Polyspace projects automatically by using
Cygwin 3.x build commands
Summary: In R2020b, the polyspace-configure command supports version 3.x of Cygwin™
(versions 3.0, 3.1, and so on).

See also “Check if Polyspace Supports Build Scripts”.

Benefits: Using the polyspace-configure command, you can trace build scripts that are executed
at a Cygwin 3.x command line and create a Polyspace project with the source files and compilation
options automatically specified.

C++17 Support: Run Polyspace analysis on code with C++17 features
Summary: In R2020b, Polyspace can interpret the majority of C++17-specific features.

See also:

• C++ standard version (-cpp-version)
• “C/C++ Language Standard Used in Polyspace Analysis”
• “C++17 Language Elements Supported in Polyspace”

Benefits: You can now set up a Polyspace analysis for code containing C++17-specific language
elements. Previously, some C++17 specific language elements were not recognized and caused
compilation errors.

Configuration from Build System: Generate a project file or analysis
options file by using a JSON compilation database
Summary: In R2020b, if your build system supports the generation of a JSON compilation database,
you can create a Polyspace project file or an analysis options file from your build system without

R2020b

1-2

tracing your build process. After you generate the JSON compilation database file, pass this file to
polyspace-configure by using the option -compilation-database to extract your build
information.

For more information on compilation databases, see JSON Compilation Database.

Benefits: Previously, you had to invoke your build command and trace your build process to extract
the build information. For some build systems such as Bazel, polyspace-configure could not
always trace the build process, resulting in errors when running an analysis by using the generated
options file.

Configuration from Build System: Specify how Polyspace imports
compiler macro definitions
Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, you can specify how Polyspace imports the
compiler macro definitions.

Use option -import-macro-definitions and specify:

• none — Skip the import of macro definition. You can provide macro definitions manually instead.
• from-whitelist — Use a Polyspace white list to query your compiler for macro definitions.
• from-source-token — Use all non-keyword tokens in your source files to query your compiler

for macro definitions.

See also polyspace-configure.

Benefits: Previously, Polyspace used all non-keyword tokens in your source files to query your
compiler for macro definitions each time that you traced your build command. You now have greater
control on the import of macro definitions.

Configuration from Build System: Compiler configuration cached from
prior runs for improved performance
Summary: In R2020b, when you use polyspace-configure to create a Polyspace project file or to
generate an analysis options file from your build system, Polyspace caches your compiler
configuration. If your compiler configuration does not change, Polyspace reuses the cached
configuration during subsequent runs of polyspace-configure.

See also polyspace-configure.

Benefits: Previously, Polyspace did not cache your compiler configuration. Instead, during every run
of polyspace-configure, Polyspace queried your compiler for the size of fundamental types,
compiler macro definitions, and other compiler configuration information. Starting R2020b, the
caching improves the later polyspace-configure runs.

Offloading Analysis: Submit Polyspace analysis jobs from CI server to
a dedicated analysis cluster
Summary: In R2020b, you can set up a continuous integration (CI) system to offload a Polyspace
analysis to a dedicated cluster and download the results after analysis. The cluster performing the

1-3

https://clang.llvm.org/docs/JSONCompilationDatabase.html

analysis can be one server or several servers where a head node distributes the jobs to several
worker nodes which perform the analysis. MATLAB® Parallel Server™ is required on all servers
involved in distributing jobs or running the analysis.

See “Offload Polyspace Analysis from Continuous Integration Server to Another Server”.

Benefits: When running static code analysis with Polyspace as part of continuous integration, you
might want the analysis to run on a server that is different from the server running your continuous
integration (CI) scripts. For instance, you might want to perform the analysis on a server that has
more processing power. You can then offload the analysis from your CI server to the other server.

Offloading Analysis: Server-side errors reported back to client side
Summary: If you run a Polyspace analysis on a MATLAB Parallel Server cluster, in R2020b, server-
side errors are reported back in the client-side log.

The log contains this additional information reported back from the server side:

• Errors that occurred during the server-side analysis.

For instance, if a Polyspace Server license has not been activated, you see a license checkout
failure reported from the server side.

• Path to the Polyspace Server instance that runs the analysis.

Information reported from the server side appears in the log between the Start Diary and End
Diary lines.

Benefits: Starting R2020b, you can troubleshoot server-side errors more easily by using the log
reported on the client side.

Results Export: Export Polyspace results to external formats such as
SARIF JSON
Summary: In R2020b, you can use the new polyspace-results-export command to export
Polyspace results to formats such as JSON and CSV.

• The JSON object follows the Static Analysis Results Interchange Format or SARIF notation.
• The CSV file has the same fields as produced by using the earlier polyspace-report-

generator command with the -generate-results-list-file option.

Use the polyspace-report-generator command to generate PDF or Word reports in a
predefined format. To package results using your own format, export them using the polyspace-
results-export command and read the resulting JSON object or CSV file.

You can use this command with results generated locally or with results uploaded to Polyspace
Access.

See also polyspace-results-export.

Benefits: Using the JSON object or CSV file, you can display results in a convenient format. For
instance, you can group defects found by Bug Finder based on their impact. Because the JSON object

R2020b

1-4

follows a standard notation, you can also use this format to display Polyspace results with results
from other tools.

User Authentication: Use a credentials file to pass your Polyspace
Access credentials at the command line
Summary: In R2020b, if you use a command that requires your Polyspace Access credentials, you
can save these credentials in a file that you pass to the command. If you use that command inside a
script, you no longer need to store your credentials in the script.

To create a credentials file, enter a set of credentials, either as -login and -encrypted-password
entries on separate lines, for example:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

Or as a -api-key entry:

-api-key keyValue123

For more information on generating API keys, see “Configure User Manager” (Polyspace Bug Finder
Access).

Save the file and pass it to the command by using the -credentials-file flag. You can use the
credentials file with these Polyspace commands:

• polyspace-access
• polyspace-results-export
• polyspace-report-generator

For increased security, restrict the read/write permissions for the credentials file.

Benefits: Previously, you could provide your Polyspace Access credentials in a script only by passing
them directly to the command. Starting R2020b, when the command that requires the credentials
runs, someone who is inspecting currently running processes, for instance, by using the command ps
aux on Linux, can no longer see your credentials.

Importing Review Information: Accept information in source or
destination results folder in case of merge conflicts
Summary: In R2020b, when importing review information such as severity, status, and comments at
the command line, if the same result has different review information in the source and destination
folder, you can choose one of the following:

• That the review information in the destination folder is retained.

This behavior is the default behavior of the polyspace-comments-import command.
• That the review information in the source folder overwrites the information in the destination

folder.

You can switch to this behavior using the new option -overwrite-destination-comments.

See also polyspace-comments-import.

1-5

Benefits: Previously, newer review information in the destination folder was retained and could not
be overwritten. Now, when merging review information, you can choose whether the source or
destination folder takes precedence in case of merge conflicts.

polyspacePackNGo Function: Generate and package Polyspace option
files from a Simulink model
Summary: In R2020b, you can package Polyspace option files along with code generated from a
Simulink® model, and then analyze the code on a different machine in a distributed workflow. After
packaging the generated code, create and archive options files required for a Polyspace analysis by
using the polyspacePackNGo function.

See also:

• polyspacePackNGo
• “Run Polyspace Analysis on Generated Code by Using Packaged Options Files”

Benefits: In a distributed workflow, a Simulink user generates code from a model and sends the code
to another development environment. In this environment, a Polyspace user analyzes the generated
code by using design ranges and other model-specific information. Previously, in this distributed
workflow, you configured the Polyspace analysis options manually. Starting in R2020b, you do not
have to manually create the option files when analyzing generated code by using Polyspace in a
distributed workflow.

AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules
including 61 new rules in R2020b
Summary: In R2020b, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-1 A project shall not contain

instances of non-volatile
variables being given values
that are not subsequently used.

AUTOSAR C++14 Rule
A0-1-1

A0-1-3 Every function defined in an
anonymous namespace, or static
function with internal linkage,
or private member function
shall be used.

AUTOSAR C++14 Rule
A0-1-3

A2-7-2 Sections of code shall not be
"commented out".

AUTOSAR C++14 Rule
A2-7-2

A2-10-4 The identifier name of a non-
member object with static
storage duration or static
function shall not be reused
within a namespace.

AUTOSAR C++14 Rule
A2-10-4

R2020b

1-6

AUTOSAR C++14 Rule Description Polyspace Checker
A2-10-5 An identifier name of a function

with static storage duration or a
non-member object with
external or internal linkage
should not be reused.

AUTOSAR C++14 Rule
A2-10-5

A3-1-5 A function definition shall only
be placed in a class definition if
(1) the function is intended to
be inlined (2) it is a member
function template (3) it is a
member function of a class
template.

AUTOSAR C++14 Rule
A3-1-5

A3-1-6 Trivial accessor and mutator
functions should be inlined.

AUTOSAR C++14 Rule
A3-1-6

A3-8-1 An object shall not be accessed
outside of its lifetime.

AUTOSAR C++14 Rule
A3-8-1

A5-1-6 Return type of a non-void return
type lambda expression should
be explicitly specified.

AUTOSAR C++14 Rule
A5-1-6

A5-1-8 Lambda expressions should not
be defined inside another
lambda expression.

AUTOSAR C++14 Rule
A5-1-8

A5-1-9 Identical unnamed lambda
expressions shall be replaced
with a named function or a
named lambda expression.

AUTOSAR C++14 Rule
A5-1-9

A5-2-1 dynamic_cast should not be
used.

AUTOSAR C++14 Rule
A5-2-1

A5-3-1 Evaluation of the operand to the
typeid operator shall not contain
side effects.

AUTOSAR C++14 Rule
A5-3-1

A5-3-2 Null pointers shall not be
dereferenced.

AUTOSAR C++14 Rule
A5-3-2

A5-10-1 A pointer to member virtual
function shall only be tested for
equality with null-pointer-
constant.

AUTOSAR C++14 Rule
A5-10-1

A6-2-1 Move and copy assignment
operators shall either move or
respectively copy base classes
and data members of a class,
without any side effects.

AUTOSAR C++14 Rule
A6-2-1

A6-2-2 Expression statements shall not
be explicit calls to constructors
of temporary objects only.

AUTOSAR C++14 Rule
A6-2-2

1-7

AUTOSAR C++14 Rule Description Polyspace Checker
A6-5-3 Do statements should not be

used.
AUTOSAR C++14 Rule
A6-5-3

A7-1-1 Constexpr or const specifiers
shall be used for immutable
data declaration.

AUTOSAR C++14 Rule
A7-1-1

A7-1-2 The constexpr specifier shall be
used for values that can be
determined at compile time.

AUTOSAR C++14 Rule
A7-1-2

A7-1-5 The auto specifier shall not be
used apart from following cases:
(1) to declare that a variable has
the same type as return type of
a function call, (2) to declare
that a variable has the same
type as initializer of non-
fundamental type, (3) to declare
parameters of a generic lambda
expression, (4) to declare a
function template using trailing
return type syntax.

AUTOSAR C++14 Rule
A7-1-5

A7-6-1 Functions declared with the
[[noreturn]] attribute shall not
return.

AUTOSAR C++14 Rule
A7-6-1

A8-4-4 Multiple output values from a
function should be returned as a
struct or tuple.

AUTOSAR C++14 Rule
A8-4-4

A8-4-14 Interfaces shall be precisely and
strongly typed.

AUTOSAR C++14 Rule
A8-4-14

A11-0-1 A non-POD type should be
defined as class.

AUTOSAR C++14 Rule
A11-0-1

A12-0-2 Bitwise operations and
operations that assume data
representation in memory shall
not be performed on objects.

AUTOSAR C++14 Rule
A12-0-2

A12-1-2 Both NSDMI and a non-static
member initializer in a
constructor shall not be used in
the same type.

AUTOSAR C++14 Rule
A12-1-2

A12-1-6 Derived classes that do not need
further explicit initialization and
require all the constructors
from the base class shall use
inheriting constructors.

AUTOSAR C++14 Rule
A12-1-6

A12-4-2 If a public destructor of a class
is non-virtual, then the class
should be declared final.

AUTOSAR C++14 Rule
A12-4-2

R2020b

1-8

AUTOSAR C++14 Rule Description Polyspace Checker
A12-8-4 Move constructor shall not

initialize its class members and
base classes using copy
semantics.

AUTOSAR C++14 Rule
A12-8-4

A12-8-7 Assignment operators should be
declared with the ref-qualifier
&.

AUTOSAR C++14 Rule
A12-8-7

A13-5-5 Comparison operators shall be
non-member functions with
identical parameter types and
noexcept.

AUTOSAR C++14 Rule
A13-5-5

A14-5-2 Class members that are not
dependent on template class
parameters should be defined in
a separate base class.

AUTOSAR C++14 Rule
A14-5-2

A14-5-3 A non-member generic operator
shall only be declared in a
namespace that does not
contain class (struct) type, enum
type or union type declarations.

AUTOSAR C++14 Rule
A14-5-3

A15-1-1 Only instances of types derived
from std::exception should be
thrown.

AUTOSAR C++14 Rule
A15-1-1

A15-1-3 All thrown exceptions should be
unique.

AUTOSAR C++14 Rule
A15-1-3

A15-2-1 Constructors that are not
noexcept shall not be invoked
before program startup.

AUTOSAR C++14 Rule
A15-2-1

A15-3-3 Main function and a task main
function shall catch at least:
base class exceptions from all
third-party libraries used,
std::exception and all otherwise
unhandled exceptions.

AUTOSAR C++14 Rule
A15-3-3

A15-3-4 Catch-all (ellipsis and
std::exception) handlers shall be
used only in (a) main, (b) task
main functions, (c) in functions
that are supposed to isolate
independent components and
(d) when calling third-party
code that uses exceptions not
according to AUTOSAR C++14
guidelines.

AUTOSAR C++14 Rule
A15-3-4

1-9

AUTOSAR C++14 Rule Description Polyspace Checker
A15-4-2 If a function is declared to be

noexcept, noexcept(true) or
noexcept(<true condition>),
then it shall not exit with an
exception.

AUTOSAR C++14 Rule
A15-4-2

A15-4-3 Function's noexcept
specification shall be either
identical or more restrictive
across all translation units and
all overriders.

AUTOSAR C++14 Rule
A15-4-3

A15-5-1 All user-provided class
destructors, deallocation
functions, move constructors,
move assignment operators and
swap functions shall not exit
with an exception. A noexcept
exception specification shall be
added to these functions as
appropriate.

AUTOSAR C++14 Rule
A15-5-1

A18-5-9 Custom implementations of
dynamic memory allocation and
deallocation functions shall
meet the semantic requirements
specified in the corresponding
"Required behaviour" clause
from the C++ Standard.

AUTOSAR C++14 Rule
A18-5-9

A18-5-10 Placement new shall be used
only with properly aligned
pointers to sufficient storage
capacity.

AUTOSAR C++14 Rule
A18-5-10

A18-5-11 "operator new" and "operator
delete" shall be defined
together.

AUTOSAR C++14 Rule
A18-5-11

A18-9-2 Forwarding values to other
functions shall be done via: (1)
std::move if the value is an
rvalue reference, (2)
std::forward if the value is
forwarding reference.

AUTOSAR C++14 Rule
A18-9-2

A18-9-4 An argument to std::forward
shall not be subsequently used.

AUTOSAR C++14 Rule
A18-9-4

A20-8-2 A std::unique_ptr shall be used
to represent exclusive
ownership.

AUTOSAR C++14 Rule
A20-8-2

A20-8-3 A std::shared_ptr shall be used
to represent shared ownership.

AUTOSAR C++14 Rule
A20-8-3

R2020b

1-10

AUTOSAR C++14 Rule Description Polyspace Checker
A20-8-5 std::make_unique shall be used

to construct objects owned by
std::unique_ptr.

AUTOSAR C++14 Rule
A20-8-5

A20-8-6 std::make_shared shall be used
to construct objects owned by
std::shared_ptr.

AUTOSAR C++14 Rule
A20-8-6

A26-5-2 Random number engines shall
not be default-initialized.

AUTOSAR C++14 Rule
A26-5-2

A27-0-2 A C-style string shall guarantee
sufficient space for data and the
null terminator.

AUTOSAR C++14 Rule
A27-0-2

A27-0-3 Alternate input and output
operations on a file stream shall
not be used without an
intervening flush or positioning
call.

AUTOSAR C++14 Rule
A27-0-3

M0-1-4 A project shall not contain non-
volatile POD variables having
only one use.

AUTOSAR C++14 Rule
M0-1-4

M0-3-2 If a function generates error
information, then that error
information shall be tested.

AUTOSAR C++14 Rule
M0-3-2

M7-5-2 The address of an object with
automatic storage shall not be
assigned to another object that
may persist after the first object
has ceased to exist.

AUTOSAR C++14 Rule
M7-5-2

M9-6-4 Named bit-fields with signed
integer type shall have a length
of more than one bit.

AUTOSAR C++14 Rule
M9-6-4

M15-1-1 The assignment-expression of a
throw statement shall not itself
cause an exception to be
thrown.

AUTOSAR C++14 Rule
M15-1-1

M15-3-1 Exceptions shall be raised only
after start-up and before
termination.

AUTOSAR C++14 Rule
M15-3-1

M15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point.

AUTOSAR C++14 Rule
M15-3-4

See also “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access).

1-11

CERT C Support: Check for missing const-qualification and use of
hardcoded numbers
Summary: In R2020b, you can look for violations of these CERT C recommendations in addition to
previously supported rules.

CERT C Rule Description Polyspace Checker
DCL00-C Const-qualify immutable objects CERT C: Rec. DCL00-C

See also “CERT C Rules and Recommendations” (Polyspace Bug Finder Access).

CERT C++ Support: Check for exception handling issues, memory
management problems, and other rule violations
Summary: In R2020b, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
ERR58-CPP Handle all exceptions thrown

before main() begins executing
CERT C++: ERR58-CPP

MEM54-CPP Provide placement new with
properly aligned pointers to
sufficient storage capacity

CERT C++: MEM54-CPP

MEM55-CPP Honor replacement dynamic
storage management
requirements

CERT C++: MEM55-CPP

MSC53-CPP Do not return from a function
declared [[noreturn]]

CERT C++: MSC53-CPP

ERR55-CPP Honor exception specifications CERT C++: ERR55-CPP

See also “CERT C++ Rules” (Polyspace Bug Finder Access).

MISRA C++:2008 Support: Check for commented out code, variables
used once, exception handling issues, and other rule violations
Summary: In R2020b, you can look for violations of these MISRA C++:2008 rules in addition to
previously supported rules.

MISRA C++:2008 Rule Description Polyspace Checker
0-1-4 A project shall not contain non-

volatile POD variables having
only one use.

MISRA C++:2008 Rule
0-1-4

0-3-2 If a function generates error
information, then that error
information shall be tested.

MISRA C++:2008 Rule
0-3-2

R2020b

1-12

https://wiki.sei.cmu.edu/confluence/x/T9cxBQ
https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR58-CPP.+Handle+all+exceptions+thrown+before+main%28%29+begins+executing
https://wiki.sei.cmu.edu/confluence/x/a3s-BQ
https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346
https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR55-CPP.+Honor+exception+specifications

MISRA C++:2008 Rule Description Polyspace Checker
2-7-2 Sections of code should not be

"commented out" using C-style
comments.

MISRA C++:2008 Rule
2-7-2

2-7-3 Sections of code should not be
"commented out" using C++-
style comments.

MISRA C++:2008 Rule
2-7-3

14-5-1 A non-member generic function
shall only be declared in a
namespace that is not an
associated namespace.

MISRA C++:2008 Rule
14-5-1

15-1-1 The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown

MISRA C++:2008 Rule
15-1-1

15-3-1 Exceptions shall be raised only
after start-up and before
termination of the program.

MISRA C++:2008 Rule
15-3-1

15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point.

MISRA C++:2008 Rule
15-3-4

See also “MISRA C++:2008 Rules” (Polyspace Bug Finder Access).

JSF AV C++ Support: Check for commented out code and methods that
can be inlined
Summary: In R2020b, you can check for these JSF® AV C++ rules in addition to previously
supported rules.

Rule Description
122 Trivial accessor and mutator functions should be

inlined.
127 Code that is not used (commented out) shall be

deleted.

See also “JSF AV C++ Coding Rules” (Polyspace Bug Finder Access).

MISRA C Support: Check for commented out code
Summary: In R2020b, you can look for violations of these MISRA C® rules and directives in addition
to previously supported rules and directives.

1-13

MISRA C Rule Description Polyspace Checker
MISRA C:2004 Rule 2.4 Sections of code should not be

"commented out".
MISRA C:2004 Rule 2.4

See also “MISRA C:2004 and
MISRA AC AGC Coding Rules”
(Polyspace Bug Finder Access).

MISRA C:2012 Dir 4.4 Sections of code should not be
"commented out".

MISRA C:2012 Dir 4.4

See also “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access).

New Bug Finder Defect Checkers: Check for post-C++11 defects such
as problematic move operations, missing constexpr, and noexcept
violations
Summary: In R2020b, you can check for these new types of defects.

Defect Description
A move operation may throw Throwing move operations might result in STL

containers using the corresponding copy
operations

Const std::move input may cause a more
expensive object copy

Const std::move input cannot be moved and
results in more expensive copy operation

Data race on adjacent bit fields Multiple threads perform unprotected operations
on adjacent bit fields of a shared data structure

Expensive std::string::c_str() use in
a std::string operation

An std::string operation uses the output of an
std::string::c_str method, resulting in
inefficient code

Expensive constant std::string
construction

A string with unmodified content is reconstructed
in different function calls or scopes, resulting in
inefficient code

Expensive copy in a range-based for
loop iteration

The loop variable of a range-based for loop
copies the range elements instead of referencing
them, resulting in inefficient code

Expensive pass by value Functions pass large parameters by value instead
of by reference

Expensive return by value Functions return large parameters by value
instead of by reference

Incorrect value forwarding Forwarded object might be modified
unexpectedly

Missing constexpr specifier constexpr specifier can be used on expression
for compile-time evaluation

R2020b

1-14

Defect Description
Noexcept function exits with exception Functions specified as noexcept,

noexcept(true) or noexcept(<true
condition>) exit with an exception, which
causes abnormal termination of program
execution, leading to resource leak and security
vulnerability

std::move called on an unmovable type Result of std::move is not movable
Throw argument raises unexpected
exception

The argument expression in a throw statement
raises unexpected exceptions, leading to resource
leaks and security vulnerabilities

See the full list of defect checkers in “Defects” (Polyspace Bug Finder Access).

Modifying Checker Behavior: Check for non-initialized buffers when
passed by pointer to certain functions
Summary: In R2020b, you can indicate that pointer arguments to some functions must point to
initialized buffers. By default, the checker Non-initialized variable checks a pointer for an
initialized buffer only when you dereference the pointer. A function call such as:

int var; func(&var);

is not flagged for non-initialization because you might initialize the variable var in func. Starting in
R2020b, you can specify a list of functions whose pointer arguments must be checked for initialized
buffers.

For more information, see:

• -code-behavior-specifications
• “Extend Checkers for Initialization to Check Function Arguments Passed by Pointers”

Benefits: Suppose that you consider some function calls as part of the system boundary and you
want to make sure that you pass initialized buffers across the boundary. For instance, the Run-Time
environment or Rte_ functions in AUTOSAR allow a software component to communicate with other
software components. You might want to ensure that pointer arguments to these functions point to
initialized buffers. You can now use Bug Finder to find uninitialized buffers passed through pointers
to these functions.

Changes in analysis options and binaries
XML syntax with option -code-behavior-specifications changed
Warns

The option -code-behavior-specifications takes an XML file as argument. You can use this
XML file to specify whether a certain function must be subjected to special checks. For instance, you
can specify that a function must not be used altogether.

In R2020b, the XML syntax changed slightly. To associate the behavior FORBIDDEN_FUNC with a
function funcName, instead of the syntax:

<function name="funcName" behavior="FORBIDDEN_FUNC">

1-15

Use the syntax:

<function name="funcName">
 <behavior name="FORBIDDEN_FUNC">
</function>

See also -code-behavior-specifications.

Changes to coding rules checking
Summary: In R2020b, coding rules checking has improved across various coding standards:

• The Polyspace checkers for AUTOSAR C++14 now follow AUTOSAR C++14 release 18-10
(October 2018).

• You can check for MISRA® C++ and JSF AV C++ rules in the same run. If the issues that you want
to detect span MISRA C++ and JSF AV C++, you can enable rules from both standards and detect
all issues in a single run.

In addition, these changes have been made in checking of previously supported rules.

Rule Description Change
MISRA C:2012 Dir 4.14 The validity of values received

from external sources shall be
checked.

The checker now use a broader
definition of valid data. The
following are no longer
considered as invalid data:

• Inputs to functions that do
not have a visible caller

• Return values of undefined
(stubbed) functions

• Global variables external to
the unit

See “Sources of Tainting in a
Polyspace Analysis”. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

R2020b

1-16

Rule Description Change
MISRA C:2012 Rule 1.1 The program shall contain no

violations of the standard C
syntax and constraints, and
shall not exceed the
implementation’s translation
limits.

The checker takes into account
header files irrespective of
whether you suppress headers
using the option Do not
generate results for (-
do-not-generate-results-
for).

For instance, the checker raises
a violation if the number of
macros in C99 code exceeds
4095. The checker now counts
macros in header files
irrespective of whether you
choose to suppress results in
headers. The reason is that the
header files are included in a
translation unit and the
translation unit as a whole is
subject to MISRA C: 2012 Rule
1.1. Previously, the headers
were taken into account only if
unsuppressed.

AUTOSAR C++14 Rule
A2-13-6

Universal character names shall
be used only inside character or
string literals.

The checker no longer flags
universal character names in
code deactivated with a
preprocessor directive such as
#if. You can enter universal
character names for non-string
uses in deactivated code.

AUTOSAR C++14 Rule
A5-1-1

Literal values shall not be used
apart from type initialization,
otherwise symbolic names shall
be used instead.

The checker now flags use of
literal values as template
parameters.

MISRA C++:2008 Rule
2-10-2

Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope.

The checker no longer flags
class member operators in
nested scopes. Class member
operators in nested scopes do
not hide each other.

MISRA C++:2008 Rule
3-4-1

An identifier declared to be an
object or type shall be defined in
a block that minimizes its
visibility.

The checker no longer flags
identifiers used only in a range-
based for loop but defined
outside the loop.

1-17

Rule Description Change
AUTOSAR C++14 Rule
A21-8-1

Arguments to character-
handling functions shall be
representable as an unsigned
char.

The checker now only detects
the use of a signed or plain
char variable with a negative
value as argument to a
character-handling function
declared in <cctype>, for
instance, isalpha() or
isdigit().

MISRA C++:2008 Rule
14-6-2

The function chosen by overload
resolution shall resolve to a
function declared previously in
the translation unit.

The checker no longer flags
calls that use an underlying
function call operator.

MISRA C++:2008 Rule
17-0-1

Reserved identifiers, macros
and functions in the Standard
Library shall not be defined,
redefined or undefined.

The checker raises a violation if
you define or redefine a macro
beginning with an underscore
followed by an uppercase letter.
These macros are typically
reserved for the Standard
Library.

CERT C: Rec. PRE01-C Use parentheses within macros
around parameter names.

The checker no longer flags
uses of the va_arg macro if the
macro parameters are not
enclosed in parentheses (in
accordance with the exception
in the CERT C specifications).

CERT C: Rule MSC39-C Do not call va_arg() on a va_list
that has an indeterminate value.

The checker does not flag an
uninitialized va_list variable
if the variable is only passed to
another function (unless the
function belongs to the standard
vprintf-family).

CERT C++: DCL51-CPP Do not declare or define a
reserved identifier.

The checker now flags:

• Macros or identifiers
beginning with underscore
followed by an uppercase
letter.

• User-defined literal
operators if the operator
names do not begin with an
underscore (C++11 and
later).

By convention, these macros,
identifiers and operators are
reserved for the Standard
Library.

R2020b

1-18

Rule Description Change
CERT C++: EXP52-CPP Do not rely on side effects in

unevaluated operands.
The checker now flags
decltype operations where the
operands have side effects.

CERT C: Rule EXP36-C and
CERT C++: EXP36-C

Do not cast pointers into more
strictly aligned pointer types.

The checker now flags:

• Conversion of void* pointer
into pointer to object.

• Source buffer misaligned
with destination buffer.

CERT C: Rule MSC39-C and
CERT C++: MSC39-C

Do not call va_arg() on a va_list
that has an indeterminate value.

The checker flags situations
where you might be using a
va_list that has an
indeterminate value.

CERT C: Rule MEM30-C and
CERT C++: MEM30-C

Do not access freed memory. This checker now flags attempts
to deallocate a previously freed
memory block.

CERT C: Rule MEM35-C and
CERT C++: MEM35-C

Allocate sufficient memory for
an object.

This checker now flags the use
of a pointer type as the
argument of the sizeof
operator in a malloc statement.
Use the type of the object to
which the pointer points as the
argument of the sizeof
operator.

CERT C: Rule EXP46-C and
CERT C++: EXP46-C

Do not use a bitwise operator
with a Boolean-like operand.

This checker now flags the use
of bitwise operators, such as:

• Bitwise AND (&, &=)
• Bitwise OR (|, |=)
• Bitwise XOR (^, ^=)
• Bitwise NOT(~)

with:

• Boolean type variables
• Outputs of relational or

equality expressions
CERT C: Rule STR37-C and
CERT C++: STR37-C

Arguments to character-
handling functions must be
representable as an unsigned
char.

The checker now only detects
the use of a signed or plain
char variable with a negative
value as argument to a
character-handling function
declared in ctype.h, for
instance, isalpha() or
isdigit().

1-19

Rule Description Change
Coding rules that involve
detection of tainted data,
including:

• CERT C: Rec. INT04-C
• CERT C: Rec. INT10-C
• CERT C: Rule INT31-C

and CERT C++: INT31-C
• CERT C: Rule INT32-C

and CERT C++: INT32-C
• CERT C: Rule INT33-C

and CERT C++: INT33-C
• CERT C: Rule ARR30-C

and CERT C++: ARR30-C
• CERT C: Rule ARR32-C
• CERT C: Rule ARR38-C

and CERT C++: ARR38-C
• CERT C: Rec. STR02-C
• CERT C: Rule STR32-C

and CERT C++: STR32-C
• CERT C: Rec. MEM04-C
• CERT C: Rec. MEM05-C
• CERT C: Rule MEM35-C

and CERT C++: MEM35-C
• CERT C: Rule FIO30-C

and CERT C++: FIO30-C
• CERT C: Rec. ENV01-C
• CERT C: Rec. MSC21-C
• CERT C: Rec. WIN00-C
• AUTOSAR C++14 Rule

A5-6-1
• ISO/IEC TS 17961

[usrfmt]
• ISO/IEC TS 17961

[taintstrcpy]
• ISO/IEC TS 17961

[taintformatio]
• ISO/IEC TS 17961

[taintsink]

 The checkers now use a
narrower definition of tainted
data. The following are no
longer considered as tainted
data:

• Inputs to functions that do
not have a visible caller

• Return values of undefined
(stubbed) functions

• Global variables external to
the unit

See “Sources of Tainting in a
Polyspace Analysis”. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

R2020b

1-20

Rule Description Change
MISRA C++:2008 Rule
0-1-4 and AUTOSAR C++14
Rule M0-1-4

A project shall not contain non-
volatile POD variables having
only one use.

• The checker now considers
dynamic assignments of a
variable, such as int var =
foo() as a single use of the
variable.

• Some objects are designed to
be used only once by their
semantics. Polyspace does
not flag a single use of these
objects:

• lock_guard
• scoped_lock
• shared_lock
• unique_lock
• thread
• future
• shared_future

If you use nonstandard
objects that provide similar
functionality as the objects in
the preceding list, Polyspace
might flag single uses of the
nonstandard objects. Justify
their single uses by using
comments.

Compatibility Considerations
If you checked your code for the preceding rules, you might see a change in the number of violations.

Updated Bug Finder defect checkers
Summary: In R2020b, these defect checkers have been updated.

Defect Description Update
Deterministic random
output from constant
seed and Predictable
random output from
predictable seed

Issues with seeding of random
number generator functions

The checkers now support
random number generator
functions from the C++
Standard Library, for instance,
std::linear_congruential
_engine<>::seed() and
std::mersenne_twister_en
gine<>::seed().

1-21

Defect Description Update
“Tainted Data Defects”
(Polyspace Bug Finder)

Use of tainted and unvalidated
data in critical operations

The checkers now use a
narrower definition of tainted
data. The following are no
longer considered as tainted
data:

• Inputs to functions that do
not have a visible caller

• Return values of undefined
(stubbed) functions

• Global variables external to
the unit

See “Sources of Tainting in a
Polyspace Analysis”. To revert to
the previous definition, use the
option -consider-analysis-
perimeter-as-trust-
boundary.

Large pass-by-value
argument

Functions pass large
parameters by value instead of
by reference

Checker is removed. Use
Expensive pass by value
and Expensive return by
value instead.

• Empty destructors may
cause unnecessary data
copies

• std::endl may cause an
unnecessary flush

Issues that impact performance
of C++ code

The Impact attribute of these
checkers have been changed
from High to Low.

These checkers do not have a
universally high criticality. The
checkers are critical only for
code that must be optimized for
performance.

Inefficient string
length computation

Issue that impacts performance
of C++ code

The Impact attribute of this
checker has been changed from
High to Medium.

This checker does not have a
universally high criticality. The
checker is critical only for code
that must be optimized for
performance and also promotes
a good coding style.

Missing return statement Issues with data flow This checker flags nonvoid
functions that do not return the
flow of execution except if the
function is specified as
[[noreturn]].

R2020b

1-22

Compatibility Considerations
If you check your code for the preceding defects, you might see a difference in the number of issues
found.

Updated code metrics specifications
Summary: In R2020b, these code metrics specifications have been updated.

Code Metric Update
Number of Called Functions These metrics now accounts for function calls in a

C++ constructor initializer list.

For instance, in this code snippet, the number of
called functions of Derived::Derived() is one.
Previously, the number was computed as zero.

class Base
{
 int b;
 public:
 Base() {
 b = 0;
 };
};
class Derived : public Base
{
 int d;
 public:
 Derived() : Base() {
 d = 0;
 };
};

Compatibility Considerations
If you compute these code metrics, you can see a difference in results compared to previous releases.

1-23

R2020a

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

2

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers
Summary: If you build your source code by using MPLAB XC8 C compilers, in R2020a, you can
specify the compiler name for your Polyspace analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-bug-finder-server -compiler microchip -target pic -sources file.c

See also MPLAB XC8 C Compiler (-compiler microchip).

Benefits: You can now set up a Polyspace project without knowing the internal workings of MPLAB
XC8 C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16
and XC32 compilers
Summary: If you use MPLAB XC16 or XC32 compilers to build your source code, in R2020a, you can
easily emulate these compilers by using the Polyspace GCC compiler options. See Emulate Microchip
MPLAB XC16 and XC32 Compilers.

For each compiler, you can emulate these target processor types:

• MPLAB XC16: Targets PIC24 and dsPIC.
• MPLAB XC32: Target PIC32.

Benefits: You can copy the analysis options required for emulating MPLAB XC16 or XC32 compilers
and paste into your Polyspace options file (or specify in a Polyspace project in the user interface), and
avoid compilation errors from issues specific to these compilers.

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors
Summary: In R2020a, if your source code contains non-ASCII characters, for instance, Japanese or
Korean characters, the Polyspace analysis can interpret the characters and later display the source
code correctly.

If you still have compilation errors or display issues from non-ASCII characters, you can explicitly
specify your source code encoding using the option Source code encoding (-sources-
encoding).

Extending Checkers: Run stricter analysis that considers all possible
values of system inputs
Summary: In R2020a, you can run a stricter Polyspace Bug Finder™ analysis that checks the
robustness of your code against numerical edge cases. For defects that are detected with the stricter
checks, the analysis can also show an example of values that lead to the defect. Use the option Run

R2020a

2-2

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/mplabxc8ccompilercompilermicrochip.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/emulate-microchip-mplab-xc16-and-xc32-compilers.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/sourcecodeencodingsoucesencoding.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/sourcecodeencodingsoucesencoding.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html

stricter checks considering all values of system inputs (-checks-using-
system-input-values) to enable the stricter checks.

Benefits: For a subset of Numerical and Static memory defect checkers, the analysis considers all
possible values of:

• Global variables
• Reads of volatile variables
• Returns of stubbed functions
• Inputs to the functions you specify with the option Consider inputs to these functions

(-system-inputs-from)

See also Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes,
special member functions, overloading and other groups
Summary: In R2020a, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-5 There shall be no unused named

parameters in the set of
parameters for a virtual function
and all the functions that
override it.

AUTOSAR C++14 Rule
A0-1-5

A2-3-1 Only those characters specified
in the C++ Language Standard
basic source character set shall
be used in the source code.

AUTOSAR C++14 Rule
A2-3-1

A2-7-1 The character \ shall not occur
as a last character of a C++
comment.

AUTOSAR C++14 Rule
A2-7-1

A2-10-1 An identifier declared in an
inner scope shall not hide an
identifier declared in an outer
scope.

AUTOSAR C++14 Rule
A2-10-1

A2-10-6 A class or enumeration name
shall not be hidden by a
variable, function or enumerator
declaration in the same scope.

AUTOSAR C++14 Rule
A2-10-6

A2-13-4 String literals shall not be
assigned to non-constant
pointers.

AUTOSAR C++14 Rule
A2-13-4

A2-13-6 Universal character names shall
be used only inside character or
string literals.

AUTOSAR C++14 Rule
A2-13-6

2-3

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/runstricterchecksconsideringallvaluesofsysteminputschecksusingsysteminputvalues.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/considerinputstothesefunctionssysteminputsfrom.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/considerinputstothesefunctionssysteminputsfrom.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/extend-polyspace-bug-finder-checkers-to-detect-numerical-edge-cases.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea015.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea015.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea271.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea271.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2101.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2101.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2134.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2134.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2136.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2136.html

AUTOSAR C++14 Rule Description Polyspace Checker
A3-3-2 Static and thread-local objects

shall be constant-initialized.
AUTOSAR C++14 Rule
A3-3-2

A4-5-1 Expressions with type enum or
enum class shall not be used as
operands to built-in and
overloaded operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=.

AUTOSAR C++14 Rule
A4-5-1

A4-10-1 Only nullptr literal shall be used
as the null-pointer-constraint.

AUTOSAR C++14 Rule
A4-10-1

A7-1-3 CV-qualifiers shall be placed on
the right hand side of the type
that is a typedef or a using
name.

AUTOSAR C++14 Rule
A7-1-3

A7-1-8 A non-type specifier shall be
placed before a type specifier in
a declaration.

AUTOSAR C++14 Rule
A7-1-8

A7-4-1 The asm declaration shall not be
used.

AUTOSAR C++14 Rule
A7-4-1

A8-2-1 When declaring function
templates, the trailing return
type syntax shall be used if the
return type depends on the type
of parameters.

AUTOSAR C++14 Rule
A8-2-1

A8-5-3 A variable of type auto shall not
be initialized using {} or ={}
braced-initialization.

AUTOSAR C++14 Rule
A8-5-3

A10-1-1 Class shall not be derived from
more than one base class which
is not an interface class.

AUTOSAR C++14 Rule
A10-1-1

A10-3-1 Virtual function declaration
shall contain exactly one of the
three specifiers: (1) virtual, (2)
override, (3) final.

AUTOSAR C++14 Rule
A10-3-1

A10-3-2 Each overriding virtual function
shall be declared with the
override or final specifier.

AUTOSAR C++14 Rule
A10-3-2

A10-3-3 Virtual functions shall not be
introduced in a final class.

AUTOSAR C++14 Rule
A10-3-3

A10-3-5 A user-defined assignment
operator shall not be virtual.

AUTOSAR C++14 Rule
A10-3-5

R2020a

2-4

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea332.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea332.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea451.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea451.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea4101.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea4101.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea713.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea713.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea718.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea718.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea741.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea741.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea821.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea821.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea853.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea853.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1011.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1011.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1031.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1031.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1032.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1032.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1033.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1033.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1035.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1035.html

AUTOSAR C++14 Rule Description Polyspace Checker
A11-0-2 A type defined as struct shall:

(1) provide only public data
members, (2) not provide any
special member functions or
methods, (3) not be a base of
another struct or class, (4) not
inherit from another struct or
class.

AUTOSAR C++14 Rule
A11-0-2

A12-0-1 If a class declares a copy or
move operation, or a destructor,
either via "=default", "=delete",
or via a user-provided
declaration, then all others of
these five special member
functions shall be declared as
well.

AUTOSAR C++14 Rule
A12-0-1

A12-4-1 Destructor of a base class shall
be public virtual, public override
or protected non-virtual.

AUTOSAR C++14 Rule
A12-4-1

A12-8-6 Copy and move constructors
and copy assignment and move
assignment operators shall be
declared protected or defined
"=delete" in base class.

AUTOSAR C++14 Rule
A12-8-6

A13-1-2 User defined suffixes of the user
defined literal operators shall
start with underscore followed
by one or more letters.

AUTOSAR C++14 Rule
A13-1-2

A13-2-3 A relational operator shall
return a boolean value.

AUTOSAR C++14 Rule
A13-2-3

A13-5-1 If "operator[]" is to be
overloaded with a non-const
version, const version shall also
be implemented.

AUTOSAR C++14 Rule
A13-5-1

A13-5-2 All user-defined conversion
operators shall be defined
explicit.

AUTOSAR C++14 Rule
A13-5-2

A14-7-2 Template specialization shall be
declared in the same file (1) as
the primary template (2) as a
user-defined type, for which the
specialization is declared.

AUTOSAR C++14 Rule
A14-7-2

A14-8-2 Explicit specializations of
function templates shall not be
used.

AUTOSAR C++14 Rule
A14-8-2

2-5

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1102.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1102.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1201.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1201.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1241.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1241.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1286.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1286.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1312.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1312.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1323.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1323.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1351.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1351.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1352.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1352.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1472.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1472.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1482.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1482.html

AUTOSAR C++14 Rule Description Polyspace Checker
A16-6-1 #error directive shall not be

used.
AUTOSAR C++14 Rule
A16-6-1

A17-6-1 Non-standard entities shall not
be added to standard
namespaces.

AUTOSAR C++14 Rule
A17-6-1

A18-1-3 The std::auto_ptr shall not be
used.

AUTOSAR C++14 Rule
A18-1-3

A18-1-6 All std::hash specializations for
user-defined types shall have a
noexcept function call operator.

AUTOSAR C++14 Rule
A18-1-6

A18-5-2 Operators new and delete shall
not be called explicitly.

AUTOSAR C++14 Rule
A18-5-2

A18-9-3 The std::move shall not be used
on objects declared const or
const&.

AUTOSAR C++14 Rule
A18-9-3

A23-0-1 An iterator shall not be
implicitly converted to
const_iterator.

AUTOSAR C++14 Rule
A23-0-1

CERT C Support: Check for CERT C rules related to threads and
hardcoded sensitive data, and recommendations related to macros
and code formatting
Summary: In R2020a, you can look for violations of these CERT C rules and recommendations in
addition to the previously supported ones. With these new rules, all CERT C rules can be checked
with Bug Finder.

R2020a

2-6

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1661.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1661.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1761.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1761.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1813.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1813.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1816.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1816.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1852.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1852.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1893.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea1893.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2301.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulea2301.html

Rules

CERT C Rule Description Polyspace Checker
CON34-C Declare objects shared between

threads with appropriate
storage durations

CERT C: Rule CON34-C

CON38-C Preserve thread safety and
liveness when using condition
variables

CERT C: Rule CON38-C

MSC41-C Never hard code sensitive
information

CERT C: Rule MSC41-C

POS47-C Do not use threads that can be
canceled asynchronously

CERT C: Rule POS47-C

POS50-C Declare objects shared between
POSIX threads with appropriate
storage durations

CERT C: Rule POS50-C

POS53-C Do not use more than one mutex
for concurrent waiting
operations on a condition
variable

CERT C: Rule POS53-C

Recommendations

CERT C Recommendation Description Polyspace Checker
PRE10-C Wrap multistatement macros in

a do-while loop
CERT C: Rec. PRE10-C

PRE11-C Do not conclude macro
definitions with a semicolon

CERT C: Rec. PRE11-C

EXP15-C Do not place a semicolon on the
same line as an if, for, or while
statement

CERT C: Rec. EXP15-C

CERT C++ Support: Check for CERT C++ rule related to order of
initialization in constructor
Summary: In R2020a, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
DCL58-CPP Do not modify the standard

namespaces
CERT C++: DCL58-CPP

MSC41-C Never hard code sensitive
information

CERT C++: MSC41-C

OOP53-CPP Write constructor member
initializers in the canonical
order

CERT C++: OOP53-CPP

2-7

https://wiki.sei.cmu.edu/confluence/x/rNYxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrulecon34c.html
https://wiki.sei.cmu.edu/confluence/x/l9UxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrulecon38c.html
https://wiki.sei.cmu.edu/confluence/x/pwF2Bg
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrulemsc41c.html
https://wiki.sei.cmu.edu/confluence/x/qtYxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrulepos47c.html
https://wiki.sei.cmu.edu/confluence/x/j9UxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrulepos50c.html
https://wiki.sei.cmu.edu/confluence/x/cNUxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrulepos53c.html
https://wiki.sei.cmu.edu/confluence/x/pdYxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrec.pre10c.html
https://wiki.sei.cmu.edu/confluence/x/idYxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrec.pre11c.html
https://wiki.sei.cmu.edu/confluence/x/WtYxBQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcrec.exp15c.html
https://wiki.sei.cmu.edu/confluence/x/Xnw-BQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcdcl57cpp.html
https://wiki.sei.cmu.edu/confluence/x/pwF2Bg
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcmsc41c.html
https://wiki.sei.cmu.edu/confluence/x/dXw-BQ
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/certcoop53cpp.html

CWE Support: Check for CWE rule related to incorrect block
delimitation
Summary: In R2020a, you can check for violation of this CWE rule in addition to previously
supported rules.

CWE Rule Description Polyspace Checkers
483 Incorrect block delimitation • Incorrectly indented

statement
• Semicolon on same line

as if, for or while
statement

For the full mapping between CWE rules and Polyspace Bug Finder defect checkers, see CWE Coding
Standard and Polyspace Results.

New Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and other issues
Summary: In R2020a, you can check for new types of defects.

A new category of C++-specific checkers checks for constructs that might cause performance issues
and suggests more efficient alternatives. Other checkers include security checkers for hard coded
sensitive data, good practice checkers for issues such as ill-formed macros and concurrency checkers
for issues such as asynchronously cancellable threads.

Performance Checkers

Defect Description
Const parameter values may cause
unnecessary data copies

Const parameter values prevent a move operation
resulting in a more performance-intensive copy
operation

Const return values may cause
unnecessary data copies

Const return values prevent a move operation
resulting in a more performance-intensive copy
operation

Empty destructors may cause
unnecessary data copies

User-defined empty destructors prevent
autogeneration of move constructors and move
assignment operators

Inefficient string length computation String length calculated by using string length
functions on return from
std::basic_string::c_str() instead of
using std::basic_string::length()

std::endl may cause an unnecessary
flush

std::endl is used instead of more efficient
alternatives such as \n

R2020a

2-8

https://cwe.mitre.org/data/definitions/483.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/incorrectlyindentedstatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/incorrectlyindentedstatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/cwe-and-polyspace-results.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/cwe-and-polyspace-results.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/constparametervaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/constparametervaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/constreturnvaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/constreturnvaluesmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/emptydestructorsmaycauseunnecessarydatacopies.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/inefficientstringlengthcomputation.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/std-endlmaycauseanunnecessaryflush.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/std-endlmaycauseanunnecessaryflush.html

Other Checkers

Defect Description
Asynchronously cancellable thread Calling thread might be cancelled in an unsafe

state
Automatic or thread local variable
escaping from a thread

Variable is passed from one thread to another
without ensuring that variable stays alive for
duration of both threads

Hard-coded sensitive data Sensitive data is exposed in code, for instance as
string literals

Incorrectly indented statement Statement indentation incorrectly makes it
appear as part of a block

Macro terminated with a semicolon Macro definition ends with a semicolon
Macro with multiple statements Macro consists of multiple semicolon-terminated

statements, enclosed in braces or not
Missing final step after hashing
update operation

Hash is incomplete or non-secure

Missing private key for X.509
certificate

Missing key might result in run-time error or non-
secure encryption

Move operation on const object std::move function is called with object
declared const or const&

Multiple mutexes used with same
conditional variable

Threads using different mutexes when
concurrently waiting on the same condition
variable is undefined behavior

Multiple threads waiting on same
condition variable

Using cnd_signal to wake up one of the threads
might result in indefinite blocking

No data added into context Performing hash operation on empty context
might cause run-time errors

Possibly inappropriate data type for
switch expression

Switch expression has a data type other than
char, short, int or enum

Semicolon on the same line as an if,
for or while statement

Semicolon on same line results in empty body of
if, for or while statement

Server certificate common name not
checked

Attacker might use valid certificate to
impersonate trusted host

TLS/SSL connection method not set Program cannot determine whether to call client
or server routines

TLS/SSL connection method set
incorrectly

Program calls functions that do not match role
set by connection method

Unmodified variable not const-
qualified

Variable is not const-qualified but no
modification anywhere in the program

Use of a forbidden function Function appears in a blacklist of forbidden
functions

Redundant expression in sizeof operand sizeof operand contains expression that is not
evaluated

2-9

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/asynchronouslycancellablethread.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/automaticorthreadlocalvariableescapingfromathread.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/automaticorthreadlocalvariableescapingfromathread.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/hardcodedsensitivedata.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/incorrectlyindentedstatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/macroterminatedwithasemicolon.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/macrowithmultiplestatements.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/missingfinalstepafterhashingupdateoperation.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/missingfinalstepafterhashingupdateoperation.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/missingprivatekeyforx.509certificate.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/missingprivatekeyforx.509certificate.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/moveoperationonconstobject.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/multiplemutexesusedwithsameconditionalvariable.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/multiplemutexesusedwithsameconditionalvariable.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/multiplethreadswaitingonsameconditionvariable.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/multiplethreadswaitingonsameconditionvariable.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/nodataaddedintocontext.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/possiblyinappropriatedatatypeforswitchexpression.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/possiblyinappropriatedatatypeforswitchexpression.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/semicolononsamelineasiffororwhilestatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/servercertificatecommonnamenotchecked.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/servercertificatecommonnamenotchecked.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/tlssslconnectionmethodnotset.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/tlssslconnectionmethodsetincorrectly.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/tlssslconnectionmethodsetincorrectly.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/unmodifiedvariablenotconstqualified.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/unmodifiedvariablenotconstqualified.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/useofaforbiddenfunction.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/redundantexpressioninsizeofoperand.html

Defect Description
X.509 peer certificate not checked Connection might be vulnerable to man-in-the-

middle attacks

Modifying Checkers: Create list of functions to prohibit and check for
use of functions from the list
Summary: In R2020a, you can define a blacklist of functions to forbid from your source code. The
Bug Finder checker Use of a forbidden function checks if a function from this list appears in
your sources.

Benefits: A function might be blacklisted for one of these reasons:

• The function can lead to many situations where the behavior is undefined leading to security
vulnerabilities, and a more secure function exists.

You can blacklist functions that are not explicitly checked by existing checkers such as Use of
dangerous standard function or Use of obsolete standard function.

• The function is being deprecated as part of a migration, for instance, from C++98 to C++11.

As part of a migration, you can make a list of functions that need to be replaced and use this
checker to identify their use.

See also Flag Deprecated or Unsafe Functions Using Bug Finder Checkers.

Exporting Results: Export only results that must be reviewed to
satisfy software quality objectives (SQOs)
Summary: In R2020a, when exporting Polyspace results from the Polyspace Access web interface to
a text file, you can export only those results that must be fixed or justified to satisfy your software
quality objectives. The software quality objectives are specified through a progressively stricter set of
SQO levels, numbered from 1 to 6.

See also:

• polyspace-access
• Send Email Notifications with Polyspace Bug Finder Results
• Bug Finder Quality Objectives (Polyspace Bug Finder Access)

Benefits: You can customize the requirements of each level in the Polyspace Access web interface,
and then use the option -open-findings-for-sqo with the level number to export only those
results that must be reviewed to meet the requirements.

Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace
as part of continuous delivery pipeline
Summary: In R2020a, you can start from a template Jenkins Pipeline script to run Polyspace analysis
as part of a continuous delivery pipeline.

See Sample Jenkins Pipeline Scripts for Polyspace Analysis.

R2020a

2-10

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/x.509peercertificatenotchecked.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/useofaforbiddenfunction.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/useofdangerousstandardfunction.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/useofobsoletestandardfunction.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/flag-deprecated-functions-using-bug-finder-checkers.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/gs/sample-e-mail-templates-for-e-mails-with-polyspace-results.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ug/bug-finder-quality-objectives.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ug/sample-jenkins-pipeline-scripts-for-polyspace-analysis.html

Benefits: You can make simple replacements to adapt the template to your Polyspace Server and
Access installations, and include the script in a new or existing Jenkinsfile to get up and running with
Polyspace in Jenkins Pipelines.

Report Generation: Configure report generator to communicate with
Polyspace Access over HTTPS
In R2020a, if you generate reports for results that are stored on Polyspace Access, you can configure
the polyspace-report-generator binary to communicate with Polyspace Access over HTTPS.

Use the -configure-keystore option to run this one-time configuration step. See polyspace-
report-generator.

Previously, you needed a Polyspace Bug Finder desktop license to generate reports if Polyspace
Access was configured with HTTPS.

Report Generation: Navigate to Polyspace Access Results List from
report
In R2020a, if you generate a report for results that are stored on Polyspace Access, you can navigate
from the report to the Results List in the Polyspace Access web interface.

Click the link in the ID column to open Polyspace Access with the Results List filtered down to the
corresponding finding.

Changes in analysis options and binaries
Option -function-behavior-specifications renamed to -code-behavior-specifications and
capabilities extended
Warns

The option -function-behavior-specifications has been renamed to -code-behavior-
specifications.

2-11

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/polyspacereportgenerator.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/polyspacereportgenerator.html

Using this option, you could previously map your functions to standard library functions to work
around analysis imprecisions or specify thread creation routines. Now, you can use the option to
define a blacklist of functions to forbid from your source code.

See also -code-behavior-specifications.

Changes to coding rules checking
Summary: In R2020a, the following changes have been made in checking of previously supported
rules.

Rule Description Change
Some MISRA C: 2012 rules that
were previously specific to a C
standard

• C90-specific rules: 8.1,
17.3

• C99-specific rules: 3.2,
8.10, 21.11, 21.12

These rules are now checked
irrespective of the C standard.
The reason is that the
constructs flagged by these
rules can be found in code using
either standard, possibly with
language extensions.

MISRA C:2012 Rule 8.4 A compatible declaration shall
be visible when an object with
an external linkage is defined.

• The checker now flags
tentative definitions
(variables declared without
an extern specifier and not
explicitly defined), for
instance:

uint8_t var;
• The checker does not raise a

violation on the main
function.

MISRA C++:2008 Rule
0-1-3, AUTOSAR C++14 Rule
M0-1-3

A project shall not contain
unused variables.

The checker does not flag as
unused constants used in
template instantiations, such as
the variable size here:

const std::uint8_t size = 2;
std::array<uint8_t, size> arr = {0,1};

MISRA C++:2008 Rule
2-10-5

The identifier name of a non-
member object or function with
static duration should not be
reused.

The checker does not flag
situations where a variable
defined in a header file appears
to be reused because the header
file is included more than once,
possibly along different
inclusion paths.

R2020a

2-12

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/codebehaviorspecifications.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule8.1.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule17.3.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule3.2.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule8.10.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule21.11.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule21.12.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2012rule8.4.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2008rule013.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2008rule013.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulem013.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/autosarc14rulem013.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2008rule2105.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2008rule2105.html

Rule Description Change
MISRA C++:2008 Rule
18-4-1

Dynamic heap memory
allocation shall not be used.

The checker now flags uses of
the alloca function. Though
memory leak cannot happen
with the alloca function, other
issues associated with dynamic
memory allocation, such as
memory exhaustion and
nondeterministic behavior, can
still occur.

Updated Bug Finder defect checkers
Summary: In R2020a, these defect checkers have been updated.

Defect Description Update
Copy constructor not
called in initialization
list

Copy constructor does not call
copy constructors of some data
members

The checker no longer flags
copy constructors in templates.
In template declarations, the
member data types are not
known and it is not clear which
constructors need to be called.

Dead code Code does not execute If a try block contains a
return statement, the checker
no longer flags the
corresponding catch block as
dead code. A return statement
involves a copy and copy
constructors that are called
might throw exceptions,
resulting in the catch block
being executed.

Missing explicit keyword One-parameter constructor
missing the explicit specifier

The checker has been updated
to include user-defined
conversion operators declared
or defined in-class without the
explicit keyword.

Missing return statement Function does not return value
though the return type is not
void

The checker respects the option
-termination-functions. If
Bug Finder incorrectly flags a
missing return statement on a
path where a process
termination function exists, you
can make the analysis aware of
the process termination function
using this option.

2-13

https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2008rule1841.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/misrac2008rule1841.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/copyconstructornotcalledininitializationlist.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/deadcode.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/missingexplicitkeyword.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_access/ref/missingreturnstatement.html
https://www.mathworks.com/help/releases/R2020a/polyspace_bug_finder_server/ref/terminationfunctions.html

Compatibility Considerations
If you check for the defects mentioned above, you can see a difference in the number of issues found.

R2020a

2-14

R2019b

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

3

Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers
Summary: If you build your source code by using Cosmic compilers, in R2019b, you can specify the
compiler name for your Polyspace analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-bug-finder-server -compiler cosmic -target s12z -sources file.c

Benefits: You can now set up a Polyspace project without knowing the internal workings of Cosmic
compilers. If your code compiles with your compiler, it will compile with Polyspace in most cases
without requiring additional setup. Previously, you had to explicitly define macros that were implicitly
defined by the compiler and remove unknown language extensions from your preprocessed code.

AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and other issues
In R2019b, you can look for violations of these AUTOSAR C++14 rules in addition to previously
supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-4 There shall be no unused named

parameters in non-virtual
functions.

AUTOSAR C++14 Rule
A0-1-4

A3-1-2 Header files, that are defined
locally in the project, shall have
a file name extension of one
of: .h, .hpp or .hxx.

AUTOSAR C++14 Rule
A3-1-2

A5-1-2 Variables shall not be implicitly
captured in a lambda
expression.

AUTOSAR C++14 Rule
A5-1-2

A5-1-3 Parameter list (possibly empty)
shall be included in every
lambda expression.

AUTOSAR C++14 Rule
A5-1-3

A5-1-4 A lambda expression shall not
outlive any of its reference-
captured objects.

AUTOSAR C++14 Rule
A5-1-4

A5-1-7 A lambda shall not be an
operand to decltype or
typeid.

AUTOSAR C++14 Rule
A5-1-7

A5-16-1 The ternary conditional operator
shall not be used as a sub-
expression.

AUTOSAR C++14 Rule
A5-16-1

A7-2-2 Enumeration underlying base
type shall be explicitly defined.

AUTOSAR C++14 Rule
A7-2-2

A7-2-3 Enumerations shall be declared
as scoped enum classes.

AUTOSAR C++14 Rule
A7-2-3

R2019b

3-2

https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_server/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea014.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea014.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea312.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea312.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea512.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea512.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea513.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea513.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea514.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea514.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea517.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea517.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea723.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea723.html

AUTOSAR C++14 Rule Description Polyspace Checker
A16-0-1 The preprocessor shall only be

used for unconditional and
conditional file inclusion and
include guards, and using the
following directives: (1)
#ifndef, (2) #ifdef, (3) #if,
(4) #if defined, (5) #elif,
(6) #else, (7) #define, (8)
#endif, (9) #include

AUTOSAR C++14 Rule
A16-0-1

A16-7-1 The #pragma directive shall not
be used.

AUTOSAR C++ 14 Rule
A16-7-1

A18-1-1 C-style arrays shall not be used. AUTOSAR C++ 14 Rule
A18-1-1

A18-1-2 The std::vector<bool>
specialization shall not be used.

AUTOSAR C++ 14 Rule
A18-1-2

A18-5-1 Functions malloc, calloc,
realloc and free shall not be
used.

AUTOSAR C++ 14 Rule
A18-5-1

A18-9-1 The std::bind shall not be
used.

AUTOSAR C++ 14 Rule
A18-9-1

For all supported AUTOSAR C++14 rules, see AUTOSAR C++14 Rules (Polyspace Bug Finder
Access).

CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and other issues
In R2019b, you can look for violations of these CERT C++ rules in addition to previously supported
rules.

CERT C++ Rule Description Polyspace Checker
DCL59-CPP Do not define an unnamed

namespace in a header file
CERT C++: DCL59-CPP

EXP61-CPP A lambda object shall not outlive
any of its reference captured
objects.

CERT C++: EXP61-CPP

MEM57-CPP Avoid using default operator
new for over-aligned types

CERT C++: MEM57-CPP

ERR61-CPP Catch exceptions by lvalue
reference

CERT C++: ERR61-CPP

OOP57-CPP Prefer special member functions
and overloaded operators

CERT C++: OOP57-CPP

For all supported CERT C++ rules, see CERT C++ Rules (Polyspace Bug Finder Access).

3-3

https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1601.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1601.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1671.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1671.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1811.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1811.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1812.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1812.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1851.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1851.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1891.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1891.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/autosar-c-14.html
https://wiki.sei.cmu.edu/confluence/x/VXs-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcdcl59cpp.html
https://wiki.sei.cmu.edu/confluence/x/Vns-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcexp61cpp.html
https://wiki.sei.cmu.edu/confluence/x/hns-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcmem57cpp.html
https://wiki.sei.cmu.edu/confluence/x/SXs-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcerr61cpp.html
https://wiki.sei.cmu.edu/confluence/x/lHs-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcoop57cpp.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/cert-c-rules.html

CERT C Support: Check for undefined behavior from successive joining
or detaching of the same thread
In R2019b, you can look for violations of these CERT C rules in addition to previously supported
rules.

CERT C Rule Description Polyspace Checker
CON39-C Do not join or detach a thread

that was previously joined or
detached

CERT C: Rule CON39-C

For all supported CERT C guidelines, see CERT C Rules and Recommendations (Polyspace Bug Finder
Access).

New Bug Finder Defect Checkers: Check for new security
vulnerabilities, multithreading issues, missing C++ overloads, and
other issues
Summary: In R2019b, you can check for the following new types of defects.

Defect Description
Unnamed namespace in header file Header file contains unnamed namespace leading

to multiple definitions
Lambda used as decltype or typeid
operand

decltype or typeid is used on lambda
expression

Operator new not overloaded for
possibly overaligned class

Allocated storage might be smaller than object
alignment requirement

Bytewise operations on nontrivial
class object

Value representations may be improperly
initialized or compared

Missing hash algorithm Context in EVP routine is initialized without a
hash algorithm

Missing salt for hashing operation Hashed data is vulnerable to rainbow table attack
Missing X.509 certificate Server or client cannot be authenticated
Missing certification authority list Certificate for authentication cannot be trusted
Missing or double initialization of
thread attribute

Noninitialized thread attribute used in functions
that expect initialized attributes or duplicated
initialization of thread attributes

Use of undefined thread ID Thread ID from failed thread creation used in
subsequent thread functions

Join or detach of a joined or detached
thread

Thread that was previously joined or detached is
joined or detached again

R2019b

3-4

https://wiki.sei.cmu.edu/confluence/x/L9UxBQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcrulecon39c.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/cert-c-rules-and-recommendations.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/unnamednamespaceinheaderfile.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/lambdausedasdecltypeortypeidoperand.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/lambdausedasdecltypeortypeidoperand.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/operatornewnotoverloadedforpossiblyoveralignedclass.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/operatornewnotoverloadedforpossiblyoveralignedclass.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/bytewiseoperationsonnontrivialclassobject.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/bytewiseoperationsonnontrivialclassobject.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missinghashalgorithm.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingsaltforhashingoperation.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingx.509certificate.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingcertificationauthoritylist.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingordoubleinitializationofthreadattribute.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingordoubleinitializationofthreadattribute.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/useofundefinedthreadid.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/joinordetachofajoinedordetachedthread.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/joinordetachofajoinedordetachedthread.html

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used
Summary: In R2019b, you can look for violations of MISRA C:2012 Directive 4.12. The directive
states that dynamic memory allocation and deallocation packages provided by the Standard Library
or third-party packages shall not be used. The use of these packages can lead to undefined behavior.

See MISRA C:2012 Dir 4.12.

Configuration from Build System: Compiler version automatically
detected from build system
Summary: In R2019b, if you create a Polyspace analysis configuration from your build system by
using the polyspace-configure command, the analysis uses the correct compiler version for the
option Compiler (-compiler) for GNU® C, Clang, and Microsoft® Visual C++® compilers. You do
not have to change the compiler version before starting the Polyspace analysis.

Benefits: Previously, if you traced your build system to create a Polyspace analysis configuration, the
latest supported compiler version was used in the configuration. If your code was compiled with an
earlier version, you might encounter compilation errors and might have to specify an earlier compiler
version before starting the analysis.

For instance, if the Polyspace analysis configuration uses the version GCC 4.9 and some of the
standard headers in your GCC version include the file x86intrin.h, you can see a compilation error
such as this error:
/usr/lib/gcc/x86_64-linux-gnu/6/include/avx512bwintrin.h, line 2427:
 error: invalid type conversion
| return (__m512i) __builtin_ia32_packssdw512_mask ((__v16si) __A,
|

You had to connect the error to the incorrect compiler version, and then explicitly set a different
version. Now, the compiler version is automatically detected when you create a project from your
build command.

Updated Bug Finder defect checkers
Summary: In R2019b, this defect checker has been updated.

Defect Description Update
Pointer or reference to
stack variable leaving
scope

Pointer to local variable leaves
the variable scope

The checker now detects
pointer escape via lambda
expressions.

Compatibility Considerations
If you check for the defect mentioned above, you can see a difference in the number of issues found.

3-5

https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/misrac2012dir4.12.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_server/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/pointerorreferencetostackvariableleavingscope.html

R2019a

Version: 3.0

New Features

4

Bug Finder Analysis Engine Separated from Viewer: Run Bug Finder
analysis on server and view the results from multiple client machines
Summary: In R2019a, you can run Bug Finder on a server with the new product, Polyspace Bug
Finder Server™. You can then host the analysis results on the same server or a second server with
the product, Polyspace Bug Finder Access™. Developers whose code was analyzed (and other
reviewers such as quality engineers and development managers) can fetch these results from the
server to their desktops and view the results in a web browser, provided they have a Polyspace Bug
Finder Access license.

Benefits: You can run the Bug Finder analysis on a few powerful server class machines but view the
analysis results from many terminals.

With the desktop product, Polyspace Bug Finder, you have to run the analysis and view the results on
the same machine. To view the results on a different machine, you need a second instance of a
desktop product. The desktop products can now be used by individual developers on their desktops
prior to code submission and the server products used after code submission. See Polyspace Products
for Code Analysis and Verification.

Continuous Integration Support: Run Bug Finder on server class
computers with continuous upload to Polyspace Access web interface
Summary: In R2019a, you can check for bugs, coding standard violations and other issues on server
class machines as part of continuous integration. When developers submit code to a shared
repository, a build automation tool such as Jenkins can perform the checks using the new Polyspace
Bug Finder Server product. The analysis results can be uploaded to the Polyspace Access web

R2019a

4-2

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html

interface for review. Each reviewer with a Polyspace Bug Finder Access license can login to the
Polyspace Access web interface and review the results.

See:

• Install Polyspace Server and Access Products
• Run Polyspace Bug Finder on Server and Upload Results to Web Interface

Benefits:

• Automated post-submission checks: In a continuous integration process, build scripts run
automatically on new code submissions before integration with a code base. With the new product
Polyspace Bug Finder Server, a Bug Finder analysis can be included in this build process. The
analysis can run a specific set of Bug Finder checkers on the new code submissions and report the
results. The results can be reviewed in the Polyspace Access web interface with a Polyspace Bug
Finder Access license.

• Collaborative review: The analysis results can be uploaded to the Polyspace Access web interface
for collaborative review. For instance:

• Each quality assurance engineer with a Polyspace Bug Finder Access license can review the
Bug Finder results on a project and assign issues to developers for fixing.

• Each development team manager with a Polyspace Bug Finder Access license can see an
overview of Bug Finder results for all projects managed by the team (and also drill down to
details if necessary).

For further details, see the release notes of Polyspace Bug Finder Access .

4-3

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/install-products-required-for-polyspace-analysis-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/run-bug-finder-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_access/release-notes.html

Continuous Integration Support: Set up testing criteria based on Bug
Finder static analysis results
Summary: In R2019a, you can run Bug Finder on server class machines as part of unit and
integration testing. You can define and set up testing criteria based on Bug Finder static analysis
results.

For instance, you can set up the criteria that new code submissions must have zero high-impact
defects before integration with a code base. Any submission with high-impact defects can cause a test
failure and require code fixes.

See:

• polyspace-bug-finder-server for how to run Bug Finder on servers.
• polyspace-access for how to export Bug Finder results for comparison against predefined

testing criteria.

If you use Jenkins for build automation, you can use the Polyspace plugin. The plugin provides helper
functions to filter results based on predefined criteria. See Sample Scripts for Polyspace Analysis with
Jenkins.

Benefits:

• Automated testing: After you define testing criteria based on Bug Finder results, you can run the
tests along with regular dynamic tests. The tests can run on a periodic schedule or based on
predefined triggers.

• Prequalification with Polyspace desktop products: Prior to code submission, to avoid test failures,
developers can perform a pre-submit analysis on their code with the same criteria as the server-
side analysis. Using an installation of the desktop product, Polyspace Bug Finder, developers can
emulate the server-side analysis on their desktops and review the results in the user interface of
the desktop product. For more information on the complete suite of Polyspace products available
for deployment in a software development workflow, see Polyspace Products for Code Analysis and
Verification.

To save processing power on the desktop, the analysis can also be offloaded to a server and only
the results reviewed on the desktop. See Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server.

Continuous Integration Support: Set up email notification with
summary of Bug Finder results after analysis
Summary: In R2019a, you can set up email notification for new Bug Finder results. The email can
contain:

• A summary of new results from the latest Bug Finder run only for specific files or modules.
• An attachment with a full list of the new results. Each result has an associated link to the

Polyspace Access web interface for more detailed information.

R2019a

4-4

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ref/polyspacebugfinderservercommand.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

See Send E-mail Notifications with Polyspace Bug Finder Results.

Benefits:

• Automated notification: Developers can get notified in their e-mail inbox about results from the
last Bug Finder run on their submissions.

• Preview of Bug Finder results: Developers can see a preview of the new Bug Finder results. Based
on their criteria for reviewing results, this preview can help them decide whether they want to see
further details of the results.

• Easy navigation from e-mail summary to Polyspace Access web interface: Each developer with a
Polyspace Bug Finder Access license can use the links in the e-mail attachments to see further
details of a result in the Polyspace Access web interface.

Offloading Polyspace Analysis to Servers: Use Polyspace desktop
products on client side and server products on server side
Summary: In R2019a, you can offload a Polyspace analysis from your desktop to remote servers by
installing the Polyspace desktop products on the client side and the Polyspace server products on the
server side. After analysis, the results are downloaded to the client side for review. You must also
install MATLAB Parallel Server on the server side to manage submissions from multiple client
desktops.

4-5

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/sample-e-mail-templates-for-e-mails-with-polyspace-results.html

See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.

Benefits: The Polyspace desktop products have a graphical user interface. You can configure options
in the user interface with assistance from features such as auto-population of option arguments and
contextual help. To save processing time on your desktop, you can then offload the analysis to remote
servers.

R2019a

4-6

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

	R2020b
	Compiler Support: Set up Polyspace analysis for code compiled with Renesas SH C compilers
	Cygwin Support: Create Polyspace projects automatically by using Cygwin 3.x build commands
	C++17 Support: Run Polyspace analysis on code with C++17 features
	Configuration from Build System: Generate a project file or analysis options file by using a JSON compilation database
	Configuration from Build System: Specify how Polyspace imports compiler macro definitions
	Configuration from Build System: Compiler configuration cached from prior runs for improved performance
	Offloading Analysis: Submit Polyspace analysis jobs from CI server to a dedicated analysis cluster
	Offloading Analysis: Server-side errors reported back to client side
	Results Export: Export Polyspace results to external formats such as SARIF JSON
	User Authentication: Use a credentials file to pass your Polyspace Access credentials at the command line
	Importing Review Information: Accept information in source or destination results folder in case of merge conflicts
	polyspacePackNGo Function: Generate and package Polyspace option files from a Simulink model
	AUTOSAR C++14 Support: Check for 308 AUTOSAR C++14 rules including 61 new rules in R2020b
	CERT C Support: Check for missing const-qualification and use of hardcoded numbers
	CERT C++ Support: Check for exception handling issues, memory management problems, and other rule violations
	MISRA C++:2008 Support: Check for commented out code, variables used once, exception handling issues, and other rule violations
	JSF AV C++ Support: Check for commented out code and methods that can be inlined
	MISRA C Support: Check for commented out code
	New Bug Finder Defect Checkers: Check for post-C++11 defects such as problematic move operations, missing constexpr, and noexcept violations
	Modifying Checker Behavior: Check for non-initialized buffers when passed by pointer to certain functions
	Changes in analysis options and binaries
	XML syntax with option -code-behavior-specifications changed

	Changes to coding rules checking
	Updated Bug Finder defect checkers
	Updated code metrics specifications

	R2020a
	Compiler Support: Set up Polyspace analysis easily for code compiled with MPLAB XC8 C compilers
	Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and XC32 compilers
	Source Code Encoding: Non-ASCII characters in source code analyzed and displayed without errors
	Extending Checkers: Run stricter analysis that considers all possible values of system inputs
	AUTOSAR C++14 Support: Check for 37 new rules related to lexical conventions, standard conversions, declarations, derived classes, special member functions, overloading and other groups
	CERT C Support: Check for CERT C rules related to threads and hardcoded sensitive data, and recommendations related to macros and code formatting
	CERT C++ Support: Check for CERT C++ rule related to order of initialization in constructor
	CWE Support: Check for CWE rule related to incorrect block delimitation
	New Bug Finder Defect Checkers: Check for possible performance bottlenecks, hardcoded sensitive data and other issues
	Modifying Checkers: Create list of functions to prohibit and check for use of functions from the list
	Exporting Results: Export only results that must be reviewed to satisfy software quality objectives (SQOs)
	Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace as part of continuous delivery pipeline
	Report Generation: Configure report generator to communicate with Polyspace Access over HTTPS
	Report Generation: Navigate to Polyspace Access Results List from report
	Changes in analysis options and binaries
	Option -function-behavior-specifications renamed to -code-behavior-specifications and capabilities extended

	Changes to coding rules checking
	Updated Bug Finder defect checkers

	R2019b
	Compiler Support: Set up Polyspace analysis easily for code compiled with Cosmic compilers
	AUTOSAR C++14 Support: Check for misuse of lambda expressions, potential problems with enumerations, and other issues
	CERT C++ Support: Check for pointer escape via lambda expressions, exceptions caught by value, use of bytewise operations for copying objects, and other issues
	CERT C Support: Check for undefined behavior from successive joining or detaching of the same thread
	New Bug Finder Defect Checkers: Check for new security vulnerabilities, multithreading issues, missing C++ overloads, and other issues
	MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be used
	Configuration from Build System: Compiler version automatically detected from build system
	Updated Bug Finder defect checkers

	R2019a
	Bug Finder Analysis Engine Separated from Viewer: Run Bug Finder analysis on server and view the results from multiple client machines
	Continuous Integration Support: Run Bug Finder on server class computers with continuous upload to Polyspace Access web interface
	Continuous Integration Support: Set up testing criteria based on Bug Finder static analysis results
	Continuous Integration Support: Set up email notification with summary of Bug Finder results after analysis
	Offloading Polyspace Analysis to Servers: Use Polyspace desktop products on client side and server products on server side

